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SUMMARY

A frequency domain maximum likelihood method is developed for the estima-
tion of airplane stability and control parameters from measured data. The
model of an airplane is represented by a discrete-type steady-state Kalman filter
with time variables replaced by their Fourier series expansions. The likeli-
hood function of innovations is formulated, and by its maximization with
respect to unknown parameters the estimation algorithm is obtained. This algo-
rithm is then simplified to the output error estimation method with the data in
the form of transformed time histories, frequency response curves, or spectral
and cross-spectral densities. The development is followed by a discussion on
the equivalence of the cost function in the time and frequency domains, and on
advantages and disadvantages of the frequency domain approach. The algorithm
developed is applied in four examples to the estimation of longitudinal param-
eters of a general aviation airplane using computer-generated and measured data
in turbulent and still air. The cost functions in the time and frequency
domains are shown to be equivalent; therefore, both approaches are complemen-
tary and not contradictory. Despite some computational advantages of parameter
estimation in the frequency domain, this approach is limited to linear equa-
tions of motion with constant coefficients.

INTRODUCTION

The early approaches to the extraction of airplane stability and control
parameters from flight data were based on simple semigraphical or analytical
methods. Some of these methods used measured frequency response curves which
provided good insight into the physics of the system and reduced data process-
ing to the use of simple algebra. One of the first attempts to analyze mea-
sured data in the frequency domain for obtaining the characteristics of the
short-period longitudinal motion of an airplane was made in reference 1. 1In
reference 2 the same characteristics were estimated either by fitting the mea-
sured frequency response curves or by substituting the measured data in the
transfer function equation and minimizing the resulting error. In both cases
the least-squares technique was applied. The same technique was used for the
direct estimation of the longitudinal and lateral aerodynamic parameters in
references 3 and 4, respectively.

The regression with complex variables was developed in reference 5 and
applied to the estimation of airplane transfer function coefficients from mea-
sured frequency response curves. A more general formulation of the regression
in the frequency domain was introduced in reference 6 and extended to the maxi-
mum likelihood method in reference 7. In both cases the procedure was used for
the design of an optimal input for system identification rather than for param-
eter estimation.

With the availability of modern digital computers, the frequency domain
for airplane parameter estimation was almost forgotten and the measured data




have been mostly analyzed in the time domain. However, some further research

and applications in this area have appeared. New frequency domain methods for
system identification based on the equation-error formulation were introduced

in reference 8. Frequency domain data were used for the extraction of param-

eters of an elastic airplane in reference 9, of parameters of an airplane with
nonsteady aerodynamics in references 10 and 11, and of flying qualities crite-
ria in reference 12.

The material contained in this report is an extension of the research ini-
tiated in reference 5 and continued in references 6 and 7. Also included in
this report are some of the developments and results from references 13 and 14,
respectively. The purpose of this report is to present a rigorous development
of an algorithm for the maximum likelihood estimation of airplane parameters in
the frequency domain. The report also briefly points out the relationships
between the estimation in the time and frequency domains, and the advantages
and disadvantages of the frequency domain approach, mainly in terms of appli-
cability, computing complexity, and accuracy of final results. The development
starts with the formulation of a steady-state Kalman filter for a linear dynam-
ical system. Before the log-likelihood function of the innovations is formu-
lated, the basic properties of a complex random number and random sequence are
presented. The log-likelihood function is minimized by using the modified
Newton-Raphson technique. The maximum likelihood algorithm is then simplified
by neglecting external disturbances to the airplane. Following the discussion,
four examples are presented. They deal with the simplified longitudinal motion
of a general aviation airplane and use both computer—generated and real-flight

data.

SYMBOLS
A sensitivity matrix
ay reading of vertical accelerometer, g units
B covariance matrix of residuals
Cn pitching-moment coefficient, MY/ESE
Cy vertical-force coefficient, Fz/as
c wing mean aerodynamic chord, m
C1,C2 constants in differential equation for Gauss-Markoff process
D matrix of transformed-system equations
e{ } expected value
F matrix of continuous system
Fy force along vertical body axis, N
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G control matrix of continuous system

Gy process—noise distribution matrix of continuous system
g acceleration due to gravity, m/sec?

H transformation matrix

I identity matrix

Iy moment of inertia about lateral body axis, kg-m?2
J (@) log-likelihood function

s A

K Kalman-filter—-gain matrix

K11,12,. . .,33 elements of K matrix

k1,2,. . .,10 constants in equations of motion

M Fisher information matrix

My pitching moment, N-m

m,n transformed quantity at mth and nth interval, respectively
m mass, kg (in appendix D)

N number of data points

p covariance matrix of state variables

p{ } probability

pl ] probability density

Q process—noise covariance matrix

q rate of pitch, rad/sec

- 1

q kinetic pressure, EDVZ, N/m2

R measurement-noise covariance matrix

R,z correlation function of =z

r number of output variables



wing area, m2

cross—-spectral density of y and u

spectral density of =z

quantity at sth, tth, and Tth interval, respectively
transfer-function matrix

control vector

true airspeed, m/sec

measurement-noise vector

process-noise vector

vertical component of turbulence velocity, m/sec
state vector

measurement vector

random variable real or complex

= exp (jnwg)

angle of attack, rad

angle of attack measured by wind vane, rad

control matrix of discrete system

process-noise distribution matrix of discrete system

elevator deflection, rad

Kronecker delta

arbitrary small number
vector of unknown parameters
pitch angle, rad

innovation vector

air density, kg/m3

variance (0 is standard deviation)




o transition matrix

Py phase angle of complex variable y, deg

Pyu phase-angle characteristics relating y and u variables, deg
w angular frequency, rad/sec

wo = 2un/N

Aerodynamic derivatives (referenced to a system of body axes with the origin at
the airplane center of gravity);

3Cy 3Cp Cm
‘g = qc - % g, - ac
) 2vg
3Cy acy 3cy
Cm&e ) EE; Czq ) qc oo = 30
" v
9Cgq
Czée ) SE;
Cﬁa,CAq, defined in a i
' ppendix D (egs. (D5) to (D8))
CEQ'CmGe
Subscripts:
c continuous system
E measured quantity
g gust
k kth element of vector or kth column of matrix
L 2th element of vector or %th row of matrix
m vector consisting of all elements up to and including m
0 initial value



Superscripts:

T

R

I

transpose matrix

inverse matrix

estimated value

transformed variable
derivative with respect to time

transpose complex conjugate matrix

real part

imaginary part

Mathematical notation:

Tr

Re

[« R

frequency damain.

trace of matrix

real part of complex number

determinant

amplitude-ratio characteristic relating ¥ and U variables

increment

the log-likelihood function.

to be

x(t+1) = @ x(t) + T u(t) + Ty, w(t)

y(t)

= H x(t) + v(t)

ESTIMATION ALGORITHM

(t

(t

r N- 1)

.,N-])

For the development of the estimation algorithm it is necessary first to
postulate the model of an airplane and then to transform this model into the
The next step is the formulation of the likelihood function
of innovations and its maximization with respect to the unknown parameters.
This step leads to the iterative scheme for parameter estimation, which updates
the previous estimates by employing the second- and first-order gradients of

The linear airplane equations of motion are assumed in discrete-time form

(1)

(2)

i
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E{x(0)} = 0
(3)
E{x(0) xT(0)} = Py

where x(t) is a state vector, u(t) is a control vector, w(t) is a
process-noise vector, y(t) 1is an output vector, and v(t) is a measurement-
noise vector.

It is assumed that.

(a ¢, T, T,, and H are constant matrices

(b) & is stable

(¢) (¢,I) and (®,T) are controllable pairs

(d) (¢,H) is observable

(e) w and v are stationary, Gaussian uncorrelated noise sequences with

E{w(t)} = 0

(4)
E{w(t) wT(T)} = Q6,1
E{v(t)} =0

(5)
E{v(t) vI(T)} = R8¢ ¢

E{v(t) wI'(T)} =0 for all t and <

() N is even

In the general case the unknown parameters will occur in the matrices o,
r, Ty, H, Q, R, x(0), and Pg. Their estimation may be extremely diffi-
cult because of the algorithm complexity (see ref. 15) and possible identifi-
ability problems (see ref. 16). The system parameter estimation will be
simplified by formulating a steady-state Kalman-filter representation of
equations (1) and (2) and by considering the unknown parameters in this
representation.

The conditional expected value of the state vector is defined as

x(t) = BE{x(t) |y vy ... ym-1} (6)



The innovations are defined as

V() = y(t) - H x(t) (7)
and the covariance matrix of st;te variables is defined as

p = E{lx(t) - x(t) ]Ix(t) - x(t) 1T} (8)

Then the steady-state Kalman-filter representation of the system described by
equations (1) and (2) is

X(t+1) = ® x(t) + T u(t) + K v(t) (9)
y(t) = H x(t) + V(t) (10)

Reference 17 shows that the innovations V(t) form a sequence of independent
Gaussian vectors with

e{vi)} =0
1)
e{v(t) VI(T)} = B8 ¢

The definition of the gain matrix K in equation (9) can be found in refer-
ence 15 or 16 in the form

K = ¢pHTB"! (12)
B = HPHT + R (13)
p = opdT - KBRT + T Q' (14)

For the further development of the identification algorithm all time func-
tions in equations (9) and (10) are written in terms of their Fourier series
expansions. As stated in appendix A, the Fourier series expansion of random
variables holds in the mean-~square sense. If the Fourier series component of
x(t) 1is defined as

g B



x(t) exp(-jnwgt) . (15)

for

=2
[}
—

+ 1, « « .2 0,1, ¢« ¢ o

27T
where wg = E_' and similarly for the other variables, equations (9) and (10)

transformed from the time to the frequency domain have the form
Zn, X(n) = @ X(n) + T d(n) + K Y(n) (16)
*  §(n) = H Z(n) + Y(n) 7

In equation (16) 1z, = exp(jnwg), which follows from the relationship

2

-1
x(t+1) exp(-jnwgt) = X(n) exp(jnwg)

2|~
o
il

0

assuming that x(0) = x(N) = 0. As proved in appendix A, the transformed inno-
vations V(n) are uncorrelated, orthogonal, and Gaussian random variables with
E{S(m)} =0

Syv (18)
E{S(n) ¥*(n)} ='7;—

where S,y 1is the spectral density of V(t), and 5*(n) is the complex conju-
gate of VT(n). It follows from equations (16) and (17) that

¥(n) = H(zpI - ®)~1 T t(n) + [B (2, - "1 K + 1] I(n)

Ty (n,®) u(n) + T5(n,0) V(n) (19)



S

where I is the identity matrix, T4

and T, are the system transfer func-
tions defined as

T (n,0) = H(z,I - &)~1T (20) ?
To(n,0) = H(z,I - ®)71K + I (21)
and © is the vector of unknown parameters in equations (9) and (10). Equa- {
tion (19) is invertible in the sense that ¥(n) can be solved for directly 73
in terms of U(n) and Y (n)

in terms of ¥(n) (see ref. 18). This implies

that T, is nonsingular. Therefore, from equation (19)

J(n) = 73! §(n) - T3'Ty U(n) (22)

To obtain the likelihood function, i.e., the joint probability density of
the transformed innovations 9V(n) (assuming that all parameters are known),

a vector Y, consisting of all innovations up to and including frequency m
is introduced. Therefore

T
n = ‘:\)<--2-> G(—EH) o o e \)(m)} (23)

Assuming that the probability distribution of U, has a density pl[Yy], then
it follows from the definition of conditional probabilities that

pl¥y] = p[Sm)|¥p-1] pP¥p-1] (24)

Repeated use of this formula gives the expression for the likelihood function
as

pl%] = p[¥m) [Vpq] P[(Vm-1) |Tp-2] . . . \")(-I-EH) T)(-g)J 0(—2) .

(25)

Because the distribution of VU(m) is Gaussian, then the distribution of 9V (m)
given Y (m-1) is also Gaussian; i.e.,

10



exp[-N 9* (m) SG& U(m)]

TE| Syy/N|

p(¥@m) |V m)-1] = (26)

as follows from the definition of a complex multivariate distribution in appen-
dix B. 1In equation (26) r is the dimension of the innovation vector.

Using equation (26) the logarithm of equation (25) can be written as

N
--1

2 .
J@©) =-N > _ $*(n) sy Y(n) - N log |Syy] - Constant (27)
N

n=--
2

In the log-likelihood function given by equation (27), the unknown parameters
are the elements of the matrices ¢, I, H, K, and Syy. An estimate of the
unknown parameters is obtained by minimizing the log-likelihood function from
the feasible set of parameter values. Optimizing the log-likelihood function
for parameters in S,y gives

Syy = Zpn U(n) ¥*(n) (28)
N
--1
2
where I, = E . The estimates of the remaining unknown parameters are given
N
n=-—
2

by the root of the equation

3J (®)

3@ o6

~

for Sy, replaced by Syy. This root can be found by a modified Newton-Raphson
iteration (e.g., ref. 19) as

8 =0y + 10 (30).

11
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where the step size 0P for parameter estimates is given by

0 e ©=0,

(31)

The index 0 at the matrix M indicates that its elements were computed for
® = @p. In equation (31) M is the Fisher information matrix

923 %1
3@ 3T

(32)

Because the step size for parameter estimates is a vector with real elements
only, and the log-likelihood function is real, the expressions for the first-
and second-order gradients of J(®) are also real; i.e.,

99O _ N re 3, 9*im) sg) o (33)
= - e n -
30y W e,
and
323 (@) 3V*(n) _q 3V(n)
I L N Rer, S5} (34)
39, 90y 38y, O

The expressions for the elements of the information matrix and the gradi-
ent of the log-likelihood function are developed in appendix C in the form

: %)'1"1t =1 e 9Ty o )" ['a'rz 1 3T,
M = 2 Re Tr ———(T ) T _— n) !+ Trn———ér > T —_— 35
kL n 20, 2 w T2 20, uu J 30p 2 2 20, (35)
L
and
i * = " *

33(9) 2 Re Z,{ T o (’1‘*>—1 sod o1 (s (n) - Ty Sy ( )>§ T aTz(T*)_1

= -2 Re L — n) -~ n - T, —
36y n 30y 2 Vv 22 | Syu 1 Suu ' L3®k 2

(36)

12




where

N fi(n) @*(n)

§uu(n)
(37)

~

a ~ *

Syu(n) =N y(n) u (n)
are the estimates of input spectral densities and cross-spectral densities,
respectively.

The final estimates of unknown parameters have the following properties
(see refs. 20 and 21):

They are consistent; i.e.,
1im P{|® - ©] £ €} =1
N>
(with € arbitrarily small)
They are asymptotically unbiased; i.e.,

lim E{B} = ©
N—)m

and they are asymptotically efficient with

N - 323 ()
E{@®-© -)T} 2 -g{ ——— (38)
20 30T

Because of equations (32) and (38), the inverse of the information matrix pro-
vides the Cramér-Rao lower bounds on the variance and covariance of errors in
the estimated parameters.

OUTPUT ERROR METHOD

If the process noise is zero and the initial states are assumed to be
equal identically to zero, i.e., w(t) =0, x(0) = 0, and P(0) = 0, the
state-covariance matrix is also zero. Then, as follows from equations (12)
and (21), the Kalman gains are zero and Ty = I. The innovations are reduced
to output errors

13



V(n) = §(n) - T(n,8) G(n) (39)

where T(n,®3) is equal to Tq(n,0) defined by equation (20). For Qg > O
the innovations 9%(n) + ¥(n) and 8y, * Syy. The expressions for the
elements of the information matrix and gradient of the log-likelihood function
are obtained by simplifying equations (35) and (36) as

3 1
2 aT* _, a7 A

Mgg = 2 Re EN Tr 20, sv;l, 3@_1( Sy (n) (40)
n=--—

2
and
3J(®) aT* _1 ~ ~
BDK = -2 Re I, Tr 56; va<syu(n) ~ T Syu(n) (41)

The expressions for the information matrix and the gradient of the log-
likelihood function can also be easily derived from the simplified log-
likelihood function, which takes the form of the output error cost function

J(©) = -NI, ¥*(n) Sgv S(n) (42)

These expressions are

M(®) = 2N Re I, A*(n) Sgv A(n) (43)
3J (©) * -1
v ~-2N Re I, A" (n) Syy Y(n) (44)

where A(n) is the sensitivity matrix whose elements are equal to
3[T(n,8,) d(n)l/38y.

In some experiments airplane transfer functions are measured directly
using a harmonic input or are determined from measured input-output time
histories. Then the cost function includes a transfer function error rather
than an output error. The cost function is therefore formed as

3(®) = -NE [Tg(n) - T(n,8)]* Sgu [Tg(n) - T(n,8)] (45)

14
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where T is a vector which includes system transfer functions as elements.
These transfer functions are computed from equation (20) for a given ®0.

Both cost functions (42) and (45) can be minimized with respect to unknown
parameters in ¢, G, and H or with respect to transfer function coefficients
in T. The estimates are obtained from equations (31), (43), and (44); the
spectral densities are given by equation (28) using pertinent residuals.

For a system with a single input, the output error cost function with mea-
sured transfer functions (frequency response curves) is defined as

3©) = -NZp{E(n) [Tg(n) - T(n,8p) 1}* S5y @(n) [Tg(n) - T(n,8]  (46)

In this formulation the scalar variable i(n) may be interpreted as a weight-
ing function expressing the reliability of the measured data according to the
harmonic content of an input.

DISCUSSION

The frequency domain identification has several features which are distinct
from the time domain approach. They are mainly associated with the model repre-
sentation and estimation algorithm. There is, however, the equivalence in the
cost function used in the time and frequency domains as expressed by Parceval's
theorem. This theorem postulates the relationship between the squared magni-
tudes of the Fourier transform pairs. It therefore states that the time domain
cost function,

-1
Jmp = Z¢ VT (t) syy V(t) (47)
N-1
where X, = E , 1s equal to the frequency domain cost function,
t=0
1 uk -1
Jgp = N Z, V% (n) sSyy Y(n) (48)

Using equation (15) the frequency domain cost function can be written as

. -1 .
Jpp = ” ZnZe VT(t) exp(inwgt) Syy It V(T) exp(-jnwgyT)

= < Belt VI (t) Syv V(T) I, explinwg(t - T)]

15



where Z; = Ei%. But according to appendix A, f
T=0 i
I, expljnwg(t = 1)) = N (for t = T) %
=0 (for t # T)
Therefore, 45

-1
Jpp = Z¢ VI(t) Syy V(t) = Ip

The equivalence of both approaches is no longer valid if the frequency domain
cost function is restricted to a given frequency range. Such a restriction is
not necessary, but it is an option which is a strong point in favor of fre-
quency domain analysis with respect to time domain analysis. The selected
frequency range of interest was used, for example, in reference 9, where air-
plane rigid modes were separated from elastic ones. For similar results in the
time domain the data must be filtered accordingly.

The early airplane estimation techniques in the frequency domain were
using measured frequency response curves only. This approach could have an
advantage when repeated measurements under the same conditions are available.
A hypothesis concerning the model adequacy can be tested using the variance
estimates from scatter around the mean and from residuals (ref. 5). On the
other hand the simultaneous analysis of repeated maneuvers for obtaining a
single set of estimates with increased accuracy can also be applied to directly
measured or transformed time histories. 1In general, transformed input-output
time histories are preferred in frequency domain parameter estimation. The
inaccuracies of frequency response curves computed from transformed inputs and
outputs can be quite pronounced for frequencies in which the harmonic content
of an input is close to zero.

The transformation of model equations into the frequency domain replaces
differentiation and convolution with multiplication. As a result the sensitiv-
ity equations in the nonlinear estimation algorithm are reduced to uncoupled
algebraic expressions. This simplification can be appreciated mainly in cases

for which convolution integrals are included in the equations of motion .
(ref. 11).
The computational differences between the time and frequency domains dis~ .

cussed so far could be viewed as advantages of the frequency domain analysis.
There is, however, a substantial disadvantage of the airplane identification

in the frequency domain. This approach is limited, for practical reasons, to
only linear equations of motion with constant coefficients. The computing time
needed for parameter estimation in the frequency domain (transformation of mea-
sured data included) is about 50 percent more than in the time domain. The
assessment was obtained from the number of equations used in both domains for
one iteration when the algorithms were applied to the system of equations with-
out convolutions and process noise.

16



The estimation algorithm was developed for a linear discrete-time model.
The airplane equations of motion are, however, usually given in a continuous
form as

X = FX + Gu + Gyw (49)

where the unknown parameters can be in the matrices F, G, and Gy,. For the
continuous model (eq. (49)), the expressions for the information matrix and
gradient of the log-likelihood function remain the same as equations (35)

and (36). But now the transfer functions are defined as

T (0,0) = H(jwI - F)~lG (50)

Ty (w,0) = H(JWI - F)"1R, + I (51)

where the Kalman-filter-gain matrix is obtained from the relationships (see,
e.g., ref. 22)

Ko = PHTR]
and

FP + PFT - PHTRTVHP + G,Q.GT = 0

In the model formulation it was assumed that the initial conditions were
equal to zero, that the model described a stable motion of an airplane, that
there were no a priori known values of stability and control parameters, and
that the measurement noise was Gaussian and uncorrelated. If the initial con-
ditions differ from zero, the additional term H(z,I - Q)‘1 x(0) would have to
be included in equation (19) or the new transfer function H(JjwI - F)‘1 x(0)
would have to be added to those defined by equations (50) and (51). Then
the vector of unknown parameters can be augmented by the vector of initial
conditions.

If the airplane motion includes an unstable mode, the parameter estimation
still can proceed provided that the degree of instability is not high. A large
instability, on the other hand, can result in excessive transient motion due to
nonzero initial conditions and/or the input and thus limit the validity of the
linear equations of motion. If the a priori mean values and variances of some
parameters are known, they can be included in the estimation procedure. 1In
this case the cost function must be expanded in a similar way as indicated in
reference 19.

The maximum likelihood method developed earlier assumed a Gaussian, uncor-
related measurement noise. If the random sequence representing this noise is
correlated, the estimation algorithm does not change. The constant values of

17



spectral densities S,y or Sy, are merely replaced by the frequency depen-
dent values estimated from expressions similar to equation (37).

EXAMPLES

As examples the parameters of a small general aviation airplane were esti-
mated from computer-generated data and from measured data in still and turbu-
lent air. (Some of the data for examples 1, 3, and 4 are from ref. 14.) For
all examples the model of the airplane was based on simplified longitudinal
equations of motion with the atmospheric turbulence (gusts) approximated as a
Gauss-Markoff process of first order. The model equations (continuous form)
are developed in appendix D. When the state and output equations (D4) and (D9)

are transformed into the frequency domain and rearranged, they have the form

%D = GO + G,W (52)

§=HX+ 7 (53)
The state and output vectors are specified as R

x=1[@d g Gg]T

§=I[G & a7

where the random input is assumed to be a Gaussian, uncorrelated noise process
with E{w} = 0 and E{w?} = Oé. The matrices in equations (52) and (53) are
formulated as

18

Fs . _ _ + _ n
Jw k'ICza (1 k2CZq k3CZa
D=| -ksCp, jw - kscéq ~k7Cn,, ~ kge1CRy
L 0 0 jw + ¢ _




ko |
kg ~kio -
Vo
H = 0 1 0
Vo Vo
— Jjwu -— 0

The known constants ky, kg, . . ., Kjgr, ¢7, and c3, and the pitching-
0 . [ [] o [ » . 3
moment derivatives Cp,, Cmqr Cmq' and CmGe are defined in appendix D.

Example 1

The output data were computed from equations (D4) and (D9) for given
inputs Ge and w (with Og = 1 m/sec) and for a given set of parameters.
To the computed time histories of output variables, an uncorrelated and
Gaussian measurement noise was added. The measurement-noise standard errors
were selected as

Oq = 0.0028 rad Oq = 0.0063 rad/sec Oaz = 0.02g

The time histories of the input and output variables are plotted in figure 1.
For the estimation algorithm these data were transformed into the frequency
domain using the Filon integration formula. The sampling interval of the
transformed data was 1.047 rad/sec. The transformed data were truncated at
the frequency interval #20.944 rad/sec because outside this interval their
amplitudes were very small.

The steady-state Kalman filter representation of the airplane motion
described by equations (52) and (53) is

%D = G + KV (54)

It was assumed that the parameters c¢7 and c¢j3, the initial conditions, and
the variances of the process and measurement noise were known. Also assumed
as known was the parameter ng because of the identifiability problem.

¥ =Hx + ¥ (55)
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The last assumption is substantiated by the small effect of the term k8c1cg
on the airplane motion. The vector of unknown parameters was therefore
formed as

q

T
@=[Cza Czso Caq Chigy Cmg Cmg, *11 K2 ... K33]

where Ky7, Ky, . . ., and K33 are the elements of the Kalman-filter-gain
matrix Kg. The initial values of these elements were computed from equa-
tions (50) and (51).

First, the unknown parameters were determined by the maximum likelihood
method developed. 1In table I the estimated stability and control parameters
are compared with their true values, and the estimated Kalman gains are com-
pared with their initial values. The agreement between the first set of param-
eters is, in general, very good. The estimated values of the Kalman gains
differ significantly from their initial values, and the standard errors (lower
bounds) of these parameters are quite high. This indicates low accuracy of
these estimates. When, however, the Kalman gains were fixed on their initial
value, the estimates of the airplane parameters were farther from the true
value, as indicated by results in the fourth column of table I. The last set
of airplane parameters was obtained by considering no process noise effect on
the output data. These estimates are also less accurate than those obtained
by the maximum likelihood method with all 15 unknown parameters. Table I also
includes the variance estimates of the residuals. The limited experience
obtained from this example indicates that for stability and control parameter
estimation from data with pronounced effect of the process noise (i.e.,

O4q 2 1 m/sec), the algorithm in its complete form should be used and the Kalman
filter gains should be treated as the additional unknown parameters.

Example 2

In this example the measured data in turbulent air were used in the same
model as in the previous example. The measured input-output time histories are
presented in figure 2. For the parameter estimation the transformed data were
taken from the frequency interval +9.817 rad/sec. The standard error of the
vertical gust velocity was determined from the part of the measured data with
6e = Constant to be 04 = 1.12 m/sec. The values for measurement-noise stan-
dard errors were taken fram the results in reference 23 as

Oav = 0.0017 rad 04 = 0.005 rad/sec Oaz = 0.01g

The estimated stability and control parameters are given in the third and
fourth columns of table II. In the first case (fourth column) the Kalman gains
were treated as unknown parameters; in the second case (third column) they were
set equal to zero (assumption of no process noise). The inclusion of the pro-
cess noise in the model resulted in better accuracy of the parameter Cza, as
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indicated by its comparison with the average value obtained from the estimates
in the time domain (see ref. 23). On the other hand, the process-noise consid-
eration in the estimation process degraded the estimates of the parameters Cy
and h.. No explanation for this degradation could be found. q

Example 3

From the measured time histories in still air which are presented in fig-
ure 3, the transformed input and output data and the frequency response curves
relating all three outputs to the elevator deflection were obtained. By setting
w = 0 the state vector in equations (52) and (53) was changed to x = [a,q]T
and the matrices D, H, and G were simplified accordingly. The unknown
parameters were estimated from the minimization of the cost function, given by
equation (42) for the transformed data and by equation (45) for the frequency
response curves,

The estimated parameters are given in the sixth and seventh columns of
table II, and they are compared with the results from the time domain estima-
tion given in the fifth column of the same table. The three sets of estimates
from the same flight agree well. The standard errors of the estimates in the
frequency domain are, however, higher than those in the time domain. This
could be due to truncation of the transformed data and additional inaccuracies
in measured frequency response curves caused by taking the ratios of two com-
plex numbers. The transformed data and those computed are plotted in figure 4;
the measured and computed frequency response curves are plotted in figure 5.
Both figures indicate some modeling errors in the equation for 0o . It is also
apparent from figure 5 that the measured frequency response curves are inaccu-
rate around the frequency 6.4 rad/sec as a result of the low harmonic content
of the input at the same frequency.

Example 4

The response of the airplane to turbulence was measured in two flights
(designated run 1 and run 2 in table II) with the minimum pilot interference
(Ge ~ 0). From the time histories of the measured output variables the spec-
tral density of the vertical gust velocity Swgwg and the cross-spectral den-
sities Swgq and Swgaz were computed. They are related by the airplane
transfer function resulting from equations (52) and (53).

The state and output equations were modified in the following way:

(a) In equation (52) w and §, were set equal to zero

(b) wg was assumed as a known input

(¢) The term k3c1cngg was replaced by -jwkgcngg

(d) In equation (53) o, was set equal to zero
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The matrices D, G, and H were therefore changed as

—

jw - kqC -{1 + koC
b = J 1€z ( 2 zq)
] . ]
i ~ks5Cmy Jw - keCng
|
- . . o ¥
G = -k3Cza k7Cma - J(Dkscmq y
0 1
H =
Vo Vo
9 g9

and the model was formulated as

) D = GS 56
WgX WaWg (56)
s = HS + v 57
wgY WgX (57)
where
T
S =1|8 S
WgX [ WgQ wgq]
T
Swgy = [Swgq Swgaz] .

The vector of unknown parameters in these equations is formed as
e =lc c ' ' o ¥
= [ 20 Czq Smg  Cmg Cmq]

The estimated values of the first four parameters are given in the last two
columns of table II. From the estimates of Cﬁq and Cﬁq the value of Cmg,
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was computed from equations (D6) and (D7) and included among the unknown param-
eters. The agreement between the results from both runs is very good. The
parameters also agree with the estimates from the still air measurement with
the exception of the parameter Cza’ This parameter has a smaller value than
expected, probably because of some modeling errors in equations (56) and (57).

The measured spectral and cross—spectral densities from run 1 and those
computed by using the estimated parameters are plotted in figure 6. It was
verified that the large fit error in the phase of the cross-spectrum Sy q
did not affect the values of the estimated parameters significantly. Thd “esti-
mate from turbulence and measurement demonstrates a possibility for using these
data also for airplane stability and control parameter estimation. For certain
model formulations the derivative of pitching-moment coefficient with respect
to the rate of change in angle of attack can be estimated explicitly.

CONCLUDING REMARKS

A frequency domain maximum likelihood method has been developed for the
estimation of airplane parameters from measured flight data. A discrete-type
steady-state Kalman filter was used in the derivation of the computing algo-
rithm. The time variables in the model equations were transformed into the
frequency domain by using a Fourier series expansion. If the initial data
were Gaussian and uncorrelated, the transformed data formed a complex random
sequence which was uncorrelated, orthogonal, and Gaussian. Then, the likeli-
hood function could be formulated as a multivariate distribution of complex
innovations.

The connection between the continuous form of airplane equations of motion
and the developed algorithm is easily established. The algorithm can be sim-
plified to the output error method with the measured data in the form of trans-
formed time histories, frequency response curves, or spectral and cross—spectral
densities. In general, transformed input-output time histories are preferred
in frequency domain estimation. The inaccuracies of frequency response curves
computed from transformed inputs and outputs can be quite pronounced for fre-
quencies in which the harmonic content of an input is close to zero. The fre-
quency domain approach simplifies the estimation procedure by reducing the sen-
sitivity equations to simple algebraic expressions. It also provides an easier
way than the time domain for using the data within a frequency range of inter-
est. The serious disadvantage of the frequency domain identification is in its
practical limitation to a system described by linear equations of motion with
constant coefficients. It was shown that the cost functions in time domain and
frequency domain approaches are equivalent. It is therefore necessary to con-
sider both approaches as complementary and not contradictory.

The maximum likelihood method has been applied to computer-generated and
real flight data for the longitudinal motion of a small general aviation air-
plane. 1In the first case the estimates obtained were more accurate than those
from the simplified output error method, which did not consider the effect of
the process noise. In the second case the results were inconclusive because of
an insufficient amount of measured data. Then, the simplified algorithm was
used with the flight data from measurements in still air and turbulent air with
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no pilot input. The first set of results for deterministic input showed the
expected similarity in parameter values obtained from the time and frequency
domains. The estimates from turbulence measurements demonstrated a possibility
for using these data also for airplane parameter estimation and for explicit
estimation of the pitching-moment derivative with respect to the rate of change
in angle of attack.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665 )

April 1, 1980
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APPENDIX A

FOURIER TRANSFORM OF A STOCHASTIC PROCESS

Let z(t), where t =0, 1, .. ., and N - 1, be a real random sequence

with
E{z(t)} = 0
(A1)
E{Z(t) Z(T)} = Rzz(t—T)
Theorem 1: If z(t) 1is periodic in the mean-square sense, then it can be
expanded into a Fourier series:
N
--1
2 jnwg t
z(t) = > __ Z(n) eI"™0 (A2)
N
n=--—
2
where wqg = 27/N; and the coefficients 2Z(n), given as
1 N-1 —inwat
Z(n) = - > _ z(t) e "0 (a3)
N t=0
are uncorrelated and orthogonal randaom variables such that
E{zZ(n)} =0
S5z (n) (A4)

E{Z(m) £"(n)} = m,n

where S,,(n) is the spectral density of z(t).

Proof: From equations (A1) and (A3) the expected value of Z(n) 1is found as

1 N-1 —nwnt
E{Z(n)} = - > _ E{z(t)} e 70T - 9
N =0
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To prove the second part of equation (A4), the conjugate of 2Z(n) 1is first
multiplied by z(t) and then the expected value is taken; i.e.,

1 N-1 .
E{z*(n) z(t)} -—E S z(s) e™M0% z(t)
s=0

N . i
E{z(t) z(s)} oINS .

2t -

-1
s=0

7
—

21—~
9]

1]
o

Ry, (t-s) ejnu‘)os

The new variable T =t - s and the relationships

N
--1
1 2 jnwgT
Rzz(T) = a E X Szz(n) e (AS5)
N
n=--
2
N-1 —inWaT
Szz(n) = ::EE::::: Ryz(T) e 7% (A6)
T=~(N-1)

are introduced (see, e.g., ref. 6). Then

- 1 N jnwg (t-T) _ ! _jnwgt
E{Z(n) z(t)} = - = Ry (T) el 0 - el70% 5,,(n) (A7) .
N 1=—(N-1) N

Using equations (A3) and (A7), the expected value of Z (m) E*(n) can be
formulated as

1 N-1 . Sgz N-1 ..
E{3(m) 2*(n)} = - E{5*(n) z(t)} e IOt _ _zz S e~ (mn)upt (A8)
N =0 N2 t=0
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For m = n there is

N-1

Z e—j (m-n)wgt =N
=0

For m #n the difference m - n = a, where

a 1is an integer; therefore,

2
i
—d

—$aNw .
-jawgt 1 -e JaNwgt 1 - cos 2am + j sin 2aT

=-0
1 - "0t 1 - e W0t

e

t

Il
o

and the proof of equation (A4) is thus completed.

To prove equation (A2),

it is sufficient to show that the sequence z(t)
tends to Z, z(n) exp(jnwgt) in the mean-square sense; i.e.,
. 2}
N
-=1
2 jnwat
E< z(t) - > __ Z(n) "0 =0 (29)
N
n=--—
2
& J

The square in equation (A9) can be written as a product of itself by its
conjugate. Equation (A9) is therefore changed to

E{|z(t) |2} - I, B{3*(n) z(t)} e I™0% _ 5 E(3(n) z*(t)} eINW0OF

+ InZp E{Z(m) 2%(n)} oJ (M-t _ o

In the double summation all the terms with m # n

are equal to zero. Using
equations (A1),

(A2), and (A7), the previous equation can be expressed as

1 jnigt -jnwgt 1
Rzz(0) = < Zn Szz(n) IOt oTINY0E g . (0) + = In Szz(n) = 0

Each sum above equals R;,(0) (see eq.

(A5)); hence the whole expression
equals zero and equation (A9) is proved.
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Theorem 2: Let 2z(t), t=0, .. ., and N - 1, be mutually stochastically
independent random variables having, respectively, Gaussian distributions with
E{z(t)} = 0 and E{z2(t)} = 02. Then the sequence

1 N —jnwot
z(n) = - z(t) e (A3)
N t=0
'.(
where
N N é'/
n="'-,. . o,O],- - .,'—_1
2 2
consisting of real parts %ZR(n) and imaginary parts %zI(n) 1is a complex
Gaussian and uncorrelated sequence with
E{zR(n)} = E{zI(m)} = 0 (210)
and
T
ZR(m) || ZR(n) 1 | Szz 0
E = Sm.n (a11)
2I(m) {| £I(n) XN o s,

Proof: It has already been proved that

E{Z(n)} =

This result combined with the definition of the expected value of a complex
random variable (eq. (B1)) implies that

ey

E{ZR(n)} = E{ZI(n)} = 0 i
It has also been shown that (in eq. (A8))

S.,(n) N-1
e{zZ(m) 2*(n)} = ks e
N2 t=0 N

T Sz (n)
HITmO0T - —— g, @a12)
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Using the same approach as that for the development of equation (A8), it can
be shown that

E{Z(m) 2*(n)} = E{ZR(m) 2R(m)} + E{ZI(m) ZT1(n)}

+ JE{ZI (m) 2R(n)} -~ jE{ZR(m) ZI(n)} (A13)

and
E{z(m) Z(n)} = E{ZRm) 2Rn)} - E{ZI(m) 2I(n)}
+ JE{zR(m) ZT(n)} + FE{ZT(m) ZR(n)} (A14)

From equations (A8) and (A12) to (Al14), two sets of equations can be formed as

Szz(n)
E{zZRm) zR(m)} + B{ZI(m) 2T(n)} = ——— &,n
N (A15)
E{ZR(m) 2R(n)} - E{ZI(m) 2I(m)} = 0
and
E{ZI(m) zZR)} - E{ZRm) zIm)} =0
(A16)
E{ZRm) zI(n)} + e{ZIm) zZRm)} = o
These two sets give the solution
Szz (M)
E{ZRm) zR(n)} = E{ZT(m) 2T(m)} = . Sm,n (A17)
E{zZRm) zI(m)} = E{ZIm) 2R(n)} =0 (A18)

which proves the validity of equation (A11). Equations (A15) and (A16)
have been developed for m and n being positive. In the case where
(-N/2) £ m,n £ (N/2 - 1) the proof based on these equations is still valid.
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The only change might occur in equations (A15), where the right-hand sides
would be interchanged. The form of the solution given by equations (A17)
and (A18) does not change.

Finally, it is necessary to prove that Z(n) is Gaussian. For this
proof the concept of the moment-generating function is used. When 2Z(n)
is expressed as

N-1
Z(n) = >  cp z(t)
t=0
where
ch = l e—jnwot
t N

then the moment-generating function of the variable c¢i z(t) is given accord-
ing to reference 24 as

52
E{ebctz(t)} = ex ;—(bct)*(bct)} (A19)

where b is a constant independent of ¢ z(t). Thus, the moment-generating
function of Z(n) is

E{exp bfcg z(0) + ¢y z(1) + . . . + oy-7 z(N-1)]}

E{exp bcg z(0)} E{exp bcy z(1)} . . . E{exp boy~q z(N-1)}

b20’2 N—1 * b20'2
CtCt | = exp
t=0

(A20)

N‘] 0'2
I exp —(bcy) *(bey) | = exp
t=0  [2

which means that 2Z(n) is Gaussian with zero mean and variance 02/N or,
using equation (A4), with variance S,,/N. The sequence Z(n) is formed
by a collection of uncorrelated Gaussian random variables.
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COMPLEX RANDOM VARIABLE

A complex random variable z is a complex number z(Z) determined by
an outcome UC; i.e.,

z(g) = zR(T) + jzI(7)

such that the functions zR and 2! are random variables. By definition, the
expected value of a complex random variable is

E{z} = E{zR} + jE{=2I} (B1)
the variance is
02 = B{|z-8{z}|2) (B2)

and the covariance is

E{ [zg-E{z}] [2z]-E{2f}]} (B3)
If

E{zkzi} = E{zk} E{zﬁ} (for k # Q)

then the complex random variables zy, 2z3, . . ., and z, are uncorrelated.
They are orthogonal if

E{zkzi} =0

If the complex random variable z = zR + jzI has its real and imaginary
parts normally distributed with

E{zR} = {21} = 0

;
E{ (zR)2} = E{(z])2} = ;-og
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and these parts are stochastically independent, then the distribution of a
complex random variable =z

will be defined as a joint distribution of the
independent variables

zR and zl such that

plz] = plzR,zI]1 = p[zR] plzI] =

ex —(zR)z/c§ ex —(z1)2/o§
MO, O,

1
= — exp (—z*z/0§> (B4)
a5

If z 1is a complex vector of dimension r, then the Gaussian distribution
is defined as

plz] = !

exp(-z*I~1z) (B5)
nt |z

where I 1is the covariance matrix of
square matrix of dimension r. If 2z
independent, then I

z. This is a Hermitian nonnegative

has components that are stochastically

is a diagonal matrix. Equation (B5) agrees with the
definition of the Gaussian distribution presented in references 24 and 25.
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INFORMATION MATRIX AND GRADIENT OF LOG-LIKELIHOOD FUNCTION

From equations (32) and (34) the elements of the information matrix are
given as

av* 4 39

— gt (c1n)
a0y W

Mpg = 2N Re E{ I, ”
L

where the expected value can be written as

*
2030 1 ¥ ) V™ . 2
oV PN gl gl
0 V¥ a9 B 0y

The measured outputs and innovations are given by equations (19) and (22) as

¥ (n) Ty T(n) + T5 Y(n) (C3)

and

U(n) = T3 ¥(n) - Ty G(n) (C4)

where T3 = T51, Ty = T;1T1, and T; and T, are defined by equations (20)
and (21). Therefore,

3%  av*
E._..

-~ ~ ~ *
3®k 3@2 E (T3ky - T4ku><T32y - T42'u)

~~k

T3, E{FF"} T3, - Ty E{Ug"} T3,

~or K

- T3, E{¥8"} T}, + T4, E{GT"} T}, (C5)
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where

3T3 3T4

T3k=§(i

Becauge u(t) and V(t) are uncorrelated, the transformed variables uU(n)
and v(n) are also uncorrelated. Using equations (C3) and (B4) the expected
values in (C5) can be expressed as

\
]
E{yy*} = E {T1 ue* Y + Tzw*'r;} = ;](T1SuuT~f + T9SyyT3)
E(§*} = E{aa*r? + a0*r3)} = 1 sy,T¢
N
f (C6)
1
E{§0*} = BE{T 8" + To08*} = - TSy,
N
]
E{ii*} = - s
N uu J

After substituting equation (C6) into equation (C5) and some tedious
manipulation,

av* 3 -1 . % -1
RN -1 * p%y-1
E{aek 381} Ty T2, SyvT2g (T2)7" + T2 T1,SuuTiy (T2) (€7)

From equations (C2) and (C7),

VY _q 3 1 -1 -1
o Suv g = ;I[Tr(T-Tl(T;)_1S\,\,(T§)'1T1ksuu> + Tr (Tz Tszgl(TE)*)

E

(C8)
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Substituting equation (C8) into equation (C1), the final form for the elements
of the information matrix is obtained as

3T'| -1 - 3T'| 3T2 1 3T2

Mg = 2 Re I, | Tr|— (%)~ 185,15, — s + Tr|—(1r3) =10, — (C9)
k% n 36y 2 V2 30k uu 332 2 2 30

From equation (33) the element of the gradient of the log-likelihood
function is

37 (@) 3 W .

~k =]
= -2N Re I, U*Syy — = =2N Re L. — Sund (C10)
90 nT W e, S

Using equation (C4)

T o o=t
—— = Ty o0 - T, T, G (C11)
20y, 22 2 Ty
Then
* * *
Al SouY = (T_1T G) STUS - (T—1T G) S0 (C12)
36y vV 2,2 %Y 2 Mg A%
where
*
(T51T20> Souo = Tr[GG*SG$T§k(T§)‘1] (€13)
and
! ol 1,-1 1,-1
(T2 T1kﬁ) SyyY = Tr[yﬁ*m?k(Tg)‘1sva2 ] - Tr[uu*T1k(T§)‘1sva2 T1] (C14)
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Introducing
o = th S,y
ya* = % Syu
wt = % §uu

and approximating §vvs;$ = I, equation (C12) is changed as

*

~

a9 -1 1 * * —Ta—1m=1,4 A * *, —
‘agk' SyyV = —I; TI[T]k(Tz) 1S\)\)T2 (Syu - T1Syuw) | - Tr Tzk(Tz) 1 (C15)

Finally, substituting equation (C15) into equation (C10), the elements in the
gradient vector are obtained as

2O 2 Re: aT’{( 5)-1s5uT3 (8 5 3TE( 5=11) (c6)
= - e Tr] —(T32) ™ 'SyyT -7 - Tr] —(T3)~ 1
30y n 30 2 w2 yu 1Suu) 30y 2
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EQUATIONS OF LONGITUDINAL MOTION OF AN AIRPLANE IN PRESENCE OF TURBULENCE

The airplane equations of motion are referred to the body axes. They are
perturbed equations for datum conditions corresponding to steady horizontal
flight. The equations are based on the following assumptions:

(1) The airplane is a rigid body

(2) The elevator deflection and turbulence excite the longitudinal motion
during which the airspeed remains constant

(3) The turbulence is approximated by a one-dimensional gust field, and
the angle-of-attack and pitch-rate perturbations due to turbulence
are given as

a, = b
and
dg = ~%g

(4) The aerodynamic model equations for the increments in Cz and Cp
have the form

ACy = Cgy (@ + ag) + Czq(q - ag)E;; + CZGeGe

. . (o] - C
Acy, cma(a +ag) + Cm&(a + ag)— + cmq(q - ag);;; + CmGeGe

2Vg

where the input and output variables are the increments with respect to the
initial steady flight.
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Using these assumptions, the longitudinal equations of motion can be

expressed as

- - o.C
. d 9
a=q+—|C,a+Cq — + Cgs 8o + Cq Q Cz — | - g sin 640 (D1)
q — Zo, Z 2v, Z8a"e Zo g Zq oy g ]
o - age aqc

qc

ch
' o+ —_— S, + Q e 2 D2
Cma M ovg T “mg v Cmse®e * Cmas T mg Zy e 2V (b2)

where g sin 038 in equation (D1) is negligible.
In equations (D1) and (D2) 04 is a stochastic variable. Its spectral
density can be modeled, for example, by a Dryden formula (see ref. 26) In the

further development it will be assumed that the turbulence velocity component
is a Gauss-Markoff process of first order governed by the differential

W,
equation
ﬁg = -Civg + cow (D3)
where
Vo
C'| = 2.4 —
Lg
4.8
cy = Vol|—
ﬂLg

is the scale of turbulence, and w 1is the uncorrelated noise process with

E?w} and E{w2} = o02.

When equation (D1) is substituted into equation (D2) and equation (D3) is
considered, then the state equations for the longitudinal motion of the air-

plane will have the form
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' kqC + koC K + -
a 1Cg, (1 ko zq) 3CZU. k4°1CZq o k-|CZ6e k4CzCZq
. 1 [ ] 1 ]
q = kscnh kGCmq k7C“h + k8c1cr?lq q + ksane B + | ~kgcoCR W
W, 0 0 ~-cq W 0 c2
9] L el L ] i _
(D4)
where
K pSVg . pSc
! 2m 2" 4m
S pSE
kg = i kg =
2m 4mvy
0SVAS 0SVga2
kg = kg = ——
> o1y 6 4Iy
k7 = k8 =
21y 4Ty
(Note: k4°2Czq = 0).
: pSc .
= + - M
Cmy a2 (D5)
' : psc c ]
= + . + — D
Cmg = Cmg * Cmg\' * T C2q (D6)
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o = c[q + psc (D7)
Chg = mg ~ Cma\' T “%q

, pSc
Cmge = Cmse * Jn MaCse (D8)

For the parameter estimation from measured data, state equations (D4) are
completed by the output equations

. T o1 F _
kg
Q. k -k —_ o 0
v 9 10 Vo
q |-= 0 1 0 q |+ 0 Se (D9)
Vo X Vo . Vo o Vo .
ag — k1Cg — k2Cg — k3Cgz, || W — k1Cy
g % g 1 g aj ™9 g Se
b - . o § . — — -
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TABLE I.- ESTIMATED AIRPLANE PARAMETERS FROM COMPUTER-GENERATED DATA

Parameter

Initial value

-5.0

-20

-.80
-24
-3.3
-.0563
2.544
.0025

2.438

-.018
213.0
-5.065

-12.63

(a)

Estimate of parameter

With process noise

K estimated

-5.07
(.091)
-23.8
(2.3)
=-1.17
{.071)
-.82
(.015)
-24.0
(.52)
-3.21
(.062)
-.44
(.011)
2.31
(.010)
-.21
(.010)
1.84
(.044)
10.8
(.14)
.09
(.97)
156
(8.9)
-8
(2.1)
=15
(6.2)
.67

.30

.50

Assumed
no process noise

K fixed
-5.72 -5.2
(.20) (.10)
-17 -15
(2.7) (4.0)
-1.1 -.57
(.17) (.31)
~-.94 -.83
(.031) (.014)
-25.5 =22.1
(.38) (.65)
-3.16 -3.18
(.080) (.050)
-.0563 0
2.544 0
.0025 0
2.438 0
9.7 0
-.018 0
213.0 0
-5.065 0
-12.63 0
.72 .70
.60 .82
1.1 1.6

in parentheses are Cramér-Rao lower bounds on standard errors.
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TABLE II.- ESTIMATED AIRPLANE PARAMETERS FROM MEASUREMENTS IN TURBULENT AND STILL AIR

Estimate of parameter
(a)
Average value
and its Example 2 Example 3 (still air) Example 4
Parameter standard (turbulent air) (turbulent air)
error ;
(b) Assumed no | With Time Frequency | Frequency | Frequency domain|
process process domain domain domain (e)
noise noise (c) (d) *
Run 1 Run 2
Cza -5.3 * 0.1 -6.4 =-5.1 -5.67 -5.70 - -5.6 -4.2 -4.4
(.68) (.20) (.057) (.086) | (.19) (.47) (.61)
Cg -19 +3 -10 -44 -10.3 -8 -4 -9 -4 ‘
g (6.1) (8.4) (.92) (3.5) (4.7) (8.0) | (10)
Cy -1.2 % 0.2 -.8 -1.4 -.6 -.6 ~-.6 | |
e (.32) (. 47) (.16) (.28) (.33) | ;
Cma -.80 + 0.02 -.88 -.84 -.783 -.81 -.82 ~.9 i =9
. (.070) (.050) (.0074) (.011) (.027) (.16) | (.17) ¢
Cmq -24.2 + 0.4 -28 -32 -26.6 -28.6 -26.3 -24 ' =26 ‘
(2.2) (2.8) (.40) (.50) (.92) (4.3) | (4.6) |
Cng, -8.0 -7 s
. (2.6) = (2.5)
Cn -3.32 + 0.05 -3.3 -3.19 -3.21 -3.54 -3.38
§e (.12) (.080) (.030) (.040) (.060)

@Numbers in parentheses are Cramér-Rao lower bounds on standard errors.
bprom the maximum likelihood estimates in the time domain (ref. 23).

Crransformed input and output time histories.

dFrequency response curves.
€spectral and cross-spectral densities.
fcamputed from estimated Cﬁq and ng.
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